CONCRETE REPAIR

LÁMINA CARBOTEC

Carbon fibre filament sheets on epoxy resin base

DESCRIPTION

Carbotec sheets are manufactured through a pultrusion process from carbon fibre filaments arranged in an epoxy resin matrix. There are three different types of sheets: with an elasticity of 170 GPa module (Most commonly used: low modules: LM), of 200 GPa (high module: HM) and 250 GPa (of very high module, for specific applications: UHM).

Unidirectional Carbon fibre filament sheets on epoxy resin base, specially formulated. The carbon fibre

TECHNICAL CARACTERISTICS

ADVANTAGES AND USES

· Great freedom of design.

- Clear advantages over steel sheets, in certain applications.
- Suitable for beams, columns, floors and concrete walls.

content is approximately 68% of the sheet section.

- Durable reinforcement against both positive and negative bending deformations.
- Reinforcement in wooden beams.
- Light and flexible: It does not require any heavy machinery.
- Corrosion resistant: no additional treatment required.
- No difficulty in connections or transitions.
- Low aesthetic impact.
- Only high-quality fibres are used in manufacturing.

Application field:

These carbon fibre elements are calculated and designed for a predetermined load. These loads may change throughout the life of the building, and initial calculations may be insufficient due to:

- Openings by cutting slabs in floors or beams.
- Increase in loads due to the change in use of the building.
- Ageing of construction materials.
- · Reinforcement corrosion.
- · Concrete degradation.
- · Cutting of pre- or post-tensioned cables.
- Reparation of fire damage in certain points of the construction.
- Reparation of damages caused by earthquakes or improvement of earthquake behaviour.

The external application of extruded carbon fibres increases the load capacity of the elements (increase in bending load). The increased flexural load capacity reduces flexural strain and crack formation.

SUITABLE SUBSTRATES

- Carbotec are Carbon Fibre sheets, especially indicated for the subsequent reinforcement of concrete, wood and masonry elements.
- Minimum adhesive tensile strength of the support: 1,5 Nmm2.
- Maximum humidity content: < 4%.
- Controlled flatness. The tolerance is a maximum of 5 mm for a length of 2 m and 1 mm for a length of 30

cm

• Temperature of the element in question should be at least 8°C, and at least 3°C above the dew point temperature.

Wood:

- Surface should be brushed.
- Dust should be removed with the help of a vacuum cleaner.

APPLICATION PROCEDURE

1. Preparing the surface

- To ensure an optimal distribution of loads from the substrate to the Carbotec sheet, the surface must be slightly rough, which can be achieved by sandblasting. All damaged areas (cracks, voids and surface deficiencies) must be repaired prior to the application of Carbotec laminate.
- The roughness of the substrate, when excessive, must be corrected and levelled with suitable materials.
- The adhesion of the prepared substrate must be verified by random spot adhesion tests. Concrete should have a minimum adhesion of 1,5 N/mm2.
- It is advisable to apply EPW Implarest, when the quality of the concrete is strong enough.

2. Preparing the sheet

- Carbotec is provided in rolls. Carefully unroll the sheets, using a specific tool. Be careful not to break the ends of the sheets. Always wear suitable security clothes and equipment.
- Carbotec sheets can be cut with specific cutting tools such micro-dented scissors or radial. Both sides of the sheet should be placed on a base during the cutting process.
- Eliminate the "peel-ply" treatment layer to promote adherence on the face of the sheet that is to be adhered to the substrate to be coated, before gluing it.
- The surface should be clean before adding the glue (once the sheet is completely clean).
- 3. Epoxy adhesive preparation
- Carbotec sheet should be adhered on the surface using Adhesivo Carbotec Lámina.
- Mix component A and B in a clean container and mix it meticulously for 3 minutes with a low-speed mixer
 until getting a grey mixture. Only mix the amount of product that is going to be used.
- 4. Applying the adhesive
- The surface must be dry, clean and free of dust to apply the Adhesivo Carbotec Lámina. Preferably apply
 the adhesive on the Carbotec carbon fibre. Apply the layer of glue in a triangular section (for example 1
 mm at the ends and 4 mm in the centre) on the side of the sheet that has been cleaned.
- Press the Carbotec carbon fibre evenly against the concrete to even out the distribution of the adhesive.
 Use a ribbed metal or rubber roller to remove trapped air and ensure a perfect application of the sheet.
 Apply enough pressure to remove all excess adhesive to the sides. Clean up excess adhesive before it hardens.
- The average thickness of the adhesive layer must be approx. 1.5 mm to 2 mm.
- Press the Carbotec sheet against the substrate until the adhesive is cured enough. Carbotec adhesive sheet can be applied using a hooper. Construct the hooper with a spatula shape bridge. The Carbotec sheet slides under the hopper and the adhesive is applied using the spatula.
- The material must not be touched until 24 hours after its application. Carbotec Sheet Adheive reaches full mechanical resistance after 7 days from the application.

CONSUMPTION ACCORDING TO DIMENSIONS (KG/M²)

Carbotec Sheet Adhesive Consumption		
Width (mm)	Comsuption	
50	Aprox. 300 gr/m	
80	Aprox. 500 gr/m	
100	Aprox. 700 gr/m	
120	Aprox. 800 g/m	
150	Aprox. 1.000 g/m	

PACKAGING AND STORAGE

Presented in sheet rolls.

Minimum order 25 linear meters and from 25 linear meters multiples of 25. Carbotec Sheet must be stored in a dry and dust-free environment.

TECHNICAL DATA

Sheet type	Cross section	Tensile strength at elongation 0,6 %	Tensile strength at elongation 0,8 %
LM (Low Module) Resistance to traction: > 2.595 N/mm² Elasticity module: 170 GPa	mm ²	Resistance to theoretical traction for its calculation: 1.038 N/mm²	Resistance to theoretical traction for its calculation: 1.384 N/mm²
50 / 1,4	70	72,80 kN	97,06 kN
80 / 1,4	112	116,40 kN	155,20 kN
100 / 1,4	140	145,20 kN	193,60 kN
120 / 1,4	168	174,40 kN	232,53 kN
150 / 1,4	210	218,00 kN	290,66 kN

Type of sheet	Cross section	Traction resistance 0,6 %	Traction resistance 0,8 %
HM (High module) Resistance to traction: > 1.800 N/mm2 Elasticity module: 200 GPa	mm²	Resistance to theoretical traction for its calculation: 1.200 N/mm²	Resistance to theoretical traction for its calculation: 1.600 N/mm²
50 / 1,4	70	84,00 kN	112,00 kN
80 / 1,4	112	134,66 kN	179,55 kN
100 / 1,4	140	168,00 kN	224,00 kN
120 / 1,4	168	201,33 kN	268,44 kN
150 / 1,4	210	252,00 kN	336,00 kN

Type of sheet	Cross section	Traction resistance 0,6 %	Traction resistance 0,7 %
UHM (Very high module) Resistance to traction: > 1.800 N/mm2 Elasticity module: 250 GPa	mm²	Resistance to theoretical traction for its calculation: 1.542,85 N/mm ²	Resistance to theoretical traction for its calculation: 1.800 N/mm²
50 / 1,4	70	108,00 kN	126,00 kN
100 / 1,4	140	216,00 kN	252,00 kN
150 / 1,4	210	324,00 kN	378,00 kN

Technical features:

	LM (Low module)	HM (High module)	UHM (Very high module)
Density of the sheet	1,6 g/cm ³	1,6 g/cm ³	1,6 g/cm ³
Resistance to traction	≥ 2.595 N/mm ²	≥ 1.800 N/mm²	≥ 1.800 N/mm ²
Elasticity module	≥ 170 KN/mm²	≥ 200 KN/mm²	≥ 250 KN/mm ²
Elongation at break	≥ 15 ‰	≥ 9 ‰	≥ 7 ‰

LEGAL DISCLAIMER

The instructions for use are given according to our tests and knowledge and do not imply any commitment by GRUPO PUMA nor free the consumer from the examination and verification of the products for their correct use. Claims must be accompanied by the original packaging to allow a proper traceability.

GRUPO PUMA is not responsible, in any case, for the application of its products or constructive solutions carried out by the application company or other parties involved in the process and / or execution of the work, limiting the responsibility of GRUPO PUMA exclusively to the damages directly attributable to the supplied products, individually or integrated in systems, due to failures in their manufacturing process.

In any case, the drafter of the work project, the technical management or the person responsible for the work, or collaterally the application company or other parties involved in the process and / or execution of the work, must ensure the suitability of the products addressing the characteristics of them, as well as the conditions, support and possible pathologies of the work in question.

The values obtained by GRUPO PUMAS's products or its constructive solutions that, as the case may be, are determined by the EN standards or any other regulation that applies to it in each case refers exclusively to the conditions specifically stipulated in said regulation and that are referred to, among others, to certain characteristics of the support, humidity and temperature conditions, etc. without being them required in the tests obtained under different conditions, all in accordance with the relevant regulation.

